Strategy to Avoid Excessive Oxygen Using an Autonomous Oxygen Titration Intervention

Participation Deadline: 05/01/2026
Apply Now

Description

Ensuring adequate oxygenation is a primary goal in surgical and medical patients to treat and prevent morbidity associated with hypoxemia. However, excessive oxygen administration resulting in hyperoxemia is common, leading to unnecessary utilization of supplemental oxygen, which is a particularly limited resource in austere settings. Building on the previous Strategy to Avoid Excessive Oxygen (SAVE-O2) clinical trials1 (Trauma: NCT045349559; Burn: NCT04534972), the investigators seek to determine effective strategies to implement a targeted normoxemia approach to avoid both hyperoxemia and hypoxemia and reduce supplemental oxygen use, using the PRO100 closed loop/autonomous oxygen system. This research is critical for both military and civilian care settings in determining the effectiveness of an autonomous oxygen system to use to 1) reduce harm associated with both hypoxemia and hyperoxemia and 2) reduce excess use of oxygen.

Objectives: the investigators propose the following two objectives:

Determine the effectiveness of an autonomous oxygen titration system to improve normoxemia and reduce hypoxemia and hyperoxemia in acutely injured and ill patients receiving supplemental oxygen. The investigators will compare patient-hours spent in normoxemia (SpO2 90-96%), hypoxemia (SpO2 96%) among patients randomized to autonomous vs manual oxygen titration.

Determine the impact of an autonomous oxygen titration system on overall utilization of supplemental oxygen. The investigators will compare the total volume of supplemental oxygen administered to patients randomized to autonomous vs manual oxygen titration during the 72-hour intervention period.

Hypothesis: The investigators hypothesize that the use of an autonomous oxygen titration system will be more effective at maintaining normoxemia and reducing time spent in hypoxemia/hyperoxemia than standard manual titration in non-mechanically ventilated patients and will reduce the overall use of supplemental oxygen.